Lecture 3 Wet etching

- Basic of wet etching
 - 1. purpose: transfer the pattern made in resist lithography to the underlying layer.
 - 2. Common used materials or thin film in MEMS: silicon, silicon dioxide, silicon nitride, Al, Cr, Ti, Au, Pt, etc.
 - 3. wet etching: using wet chemical, dry etching: using gas plasma, ion, reactive ion etching.
 - 4. key: precise control of pattern dimensions, safty, and cost efficiency.
- Silicon etching

Isotropic silicon wet etching

HNA system (HNO_3+HF), etching rate can be 50 μ m/min:

a. Holes injection

$$HNO_3 + H_2O + HNO_2 \rightarrow 2HNO_2 + 2OH^- + 2h^+$$

b. Oxide formation

$$Si^{4+} + 4OH^- \rightarrow SiO_2 + H_2$$

c. Oxide etched

$$6HF + SiO_2 \rightarrow H_2SiF_6 + 2H_2O$$

Total reaction:

$$Si + HNO_3 + 6HF \rightarrow H_2SiF_6 + HNO_2 + H_2O + H_2(bubbles)$$

Iso-Etch Curve:

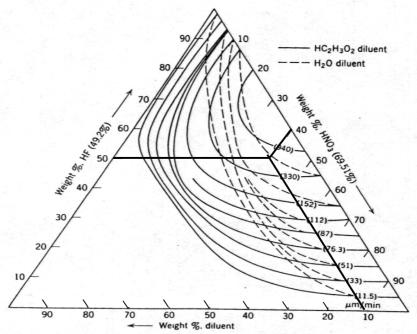
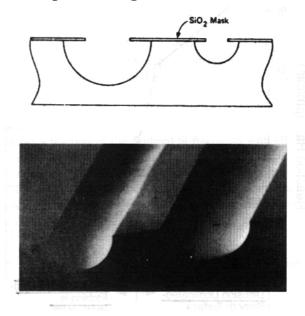



Fig. 9.1 Isoetch curves for silicon (HF: HNO₃: diluent system). From Robbins and Schwartz [5]. Reprinted with permission of the publisher, The Electrochemical Society, Inc.

Effects:

High HF Low HNO₃: oxidation limit, rough surface High HNO₃ Low HF: etching limit, smooth surface

Examples of isotropic etching:

Masking materials:

TABLE 4.6 Masking Materials for Acidic Etchants^a

	Etchants		
	Piranha	Buffered HF	
Masking	(4:1, H ₂ O ₂ :H ₂ SO ₄)	(5:1 NH ₄ F:conc. HF)	HNA
Thermal SiO ₂		0.1 μm/min	300–800 Å/min; limited etch time, thick layers often are used due to ease of patterning
CVD (450°C) SiO ₂		0.48 µm/min	0.44 μm/min
Corning 7740 glass		0.063 μ/min	1.9 μ/min
Photoresist	Attacks most organic films	Okay for short while	Resists do not stand up to strong oxidizing agents like HNO ₃ and are not used
Undoped Si, polysilicon	Forms 30 Å of SiO ₂	0.23 to 0.45 Å/min	Si 0.7 to 40 μ m/min at room temperature; at a dopant concentration <10 ¹⁷ cm ⁻³ (n or p)
Black wax			Usable at room temperature
Au/Cr	Okay	Okay	Okay
LPCVD Si ₃ N ₄		1 Å/min	Etch rate is 10–100 Å/min; preferred masking material

^a The many variables involved necessarily means that the given numbers are approximate only.

Silicon dioxide etching

- 1. Using HF or BHF(buffered HF or BOE) in different concentration, typically from 10:1 to 4:1.
- 2. Both HF or BHF have poor wetting characteristics on silicon surface, need surfactants the reduce this problem.
- 3. Domain etching

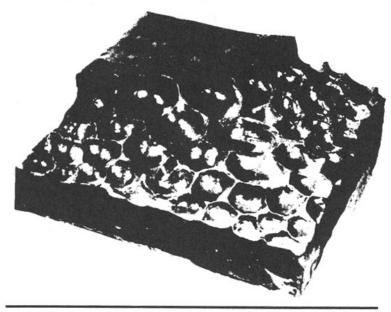


Figure 11.5 Domain nature of SiO. etching 2

- 4. important two objectives in SiO₂ wet etching:
 - a. minimize under cut
 - b. provide sufficient side wall slop
- 5. Four important parameters
 - a. Concentration (the third sensitive)

For undoped oxide, etching rate \sim 0.09-0.15 μ m/min for 5:1-7:1. (etching rate: BSG<dry oxide<wet oxide<PECVD oxide<PSG)

Note: reducing concentration reduces ethching rate as well as lateral etching (under cut)

- b. Time (the least sensitive one)
 The usually controlled parameter for different etching depth.
- c. temperature (most sensitive one)

 Most sensitive factor in relative to undercutting.

 Relationship for etching rate to temperature:

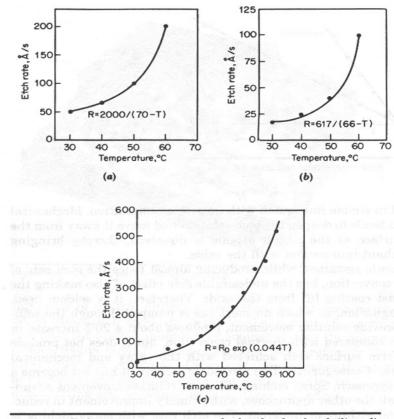


Figure 11.3 Etch rate versus temperature for doped and undoped silicon dioxide: (a) phosphorus-doped oxide; (b) boron-doped oxide; (c) undoped oxide 2

d. agitation (the second sensitive)

including thermal convection, spray, mechanical, bubble, and ultrasonic

fastest: ultrasonic, slowest: thermal convection.

Large under cut: ultra sonic, and bubble

Most popular, less under cut and effective ones: mechanical and spray (spry also provide smooth surface)

6. Slop control

By changing the ratio of ammonium fluoride (NH₄F) to hydro fluoric acid (HF) along with temp change:

7:1 NH₄F/HF at 25° C: steep side wall.

30:1 NH₄F/HF at 55° C: near flat, highly undercut side wall.

Silicon nitride etching

- 1. Using phosphoric acid (need reflux and above 100° C) or hydrofluoric acid.
- 2. Resist must be highly post bake to withstand resist lift off.
- 3. US patent # 3859222 utilizes the combination of 1-6 parts of fluoroboric acid to 100 parts phosphoric acid (H₃PO₄) at 105° C +-5° C, which is not highly corrosive to resist. This etchant can attack silicon dioxide as well:

Increasing fluoroboric acid=>increasing silicon oxide etching rate.

Increasing temp =>increasing silicon nitride rate.

4. Hard bake resist, silicon dioxide (not etched in phosphoric acid), polysilicon (not etched in HF, but BHF).

Aluminum etching

- 1. etchants including phosphoric acid, nitric acid, acetic acid, and water (typically: H₃PO₄:
 - HNO₃:CH₃COOH:H₂O=80%:5%:5%:10% immersion or spray at above 45 ° C, etch rate~0.3 μm/min)
- 2. etching happened similar to silicon, nitride acid form aluminum oxide on surface and phosphoric acid and water dissolve the material.
- 3. etching rate depends on etch composition, temperature, agitation, and time.
- 4. Mask materials: positive PR, not negative, because of the reflection from Al surface which cause resist bridging.
- 5. Spray etching overcome isotropy problems in immersion etching by directing the etch at the wafer.

Polysilocon

Using diluted HNA system

Titanium

HF based solution or NH₄OH+H₂O₂+H₂O

Gold and silver

Au:

- 1. etchant HCL: HNO₃=3:1 (aqua regia, large undercut), KI and iodine in water (KI+I₂+H₂O= 4:1:40, more practical, but opaque), or cyanide –based (toxic)
- 2. mask materials: resist

Ag:

- 1. Can be etched in acidic or basic etchants, like NH₄OH+H₂O₂+CH₃OH
- 2. mask materials: resist

Chromium

Need de-passivation (remove oxide layer) before etchant can attack

• Platinum and Palladium

Pt: etchant HCL: HNO₃=3:1 (aqua regia) above 25°C

Pd: HCl+HNO₃+CH₃COOH=1:10:10, or KI+I₂+H₂O= 4:1:40

Tables

TABLE 9.1 Compositions of Commonly Used Concentrated Aqueous Reagents

Weight %		
37		
49		
98		
85		
70		
70		
99		
30		
29		
(as NH ₃)		
	37 49 98 85 70 70 99 30 29	37 49 98 85 70 70 99 30 29

TABLE 9.3 Some Crystallographic Etches for Silicon

Formulation	Remarks
3 ml HNO ₃ 10 ml CH ₃ COOH	Dash etch, 8 hr
1 ml HF 1 ml CrO ₃ (5 M in H ₂ O)	Sirtl etch, for (111) silicon, 5 min
2 ml HF 1 ml K ₂ Cr ₂ O ₇ (0.15 M in H ₂ O)	Secco etch, for (100) and (111) silicon, 5 min
30 ml HNO ₃ 60 ml CH ₃ COOH (glacial) 60 ml H ₂ O	Wright etch, for (100) and (111) silicon, 5 min. long shelf life
30 ml solution of 1 g CrO ₃ in 2 ml H ₂ O 2 g (CuNO ₃) ₂ ·3H ₂ O	
2 ml HF 1 ml HNO ₃	Silver etch, for faults in epitaxial layers
2 ml AgNO ₃ (0.65 M in H ₂ O)	
200 ml HF 1 ml HNO ₃	For $p-n$ junction delineation, 1 min

TABLE 9.5	Etchants for Noncrystalline Films ^a		
Material	Etchant	Remark	
SiO ₂	28 ml HF 170 ml H ₂ O 113 g NH ₄ F	BHF, 1000-2500 Å/min at 25°C	
	15 ml HF 10 ml HNO ₃ 300 ml H ₂ O	P-etch, 128 Å/min at 25°C	
10 185	1 ml BHF 7 ml H ₂ O	800 Å/min	
BSG	1 ml HF 100 ml HNO ₃ 100 ml H ₂ O	R-etch, 300 Å/min for 9 mole % B ₂ O ₃ , 50 Å/min for SiO ₂	
	4.4 ml HF 100 ml HNO ₃ 100 ml H ₂ O	S-etch, 750 Å/min for 9 mole % B ₂ O ₃ , 135 Å/min for SiO ₂	
PSG	28 ml HF 170 ml H ₂ O 113 g NH ₄ F	BHF, 5500 Å/min for 8 mole % P ₂ O ₅	
	15 ml HF 10 ml HNO ₃ 300 ml H ₂ O	P-etch, 34,000 Å/min for 16 mole % P ₂ O ₅ , 110 Å/min for SiO ₂	
	1 ml BHF 7 ml H ₂ O	800 Å/min	
Si ₃ N ₄	HF	140 Å/min, CVD at 1100°C 750 Å/min, CVD at 900°C 1000 Å/min, CVD at 800°C	
	28 ml HF 170 ml H ₂ O 113 g NH ₄ F	BHF, 5–10 Å/min	
	H ₃ PO ₄	100 Å/min at 180°	

^aListed in the order in which they are described in Section 9.1.7 [51].

TABLE 9.5 (Continued)

Material	Etchant	Remark
Polysilicon	6 ml HF 100 mol HNO ₃ 40 ml H ₂ O	8000 Å/min, smooth edges
	1 ml HF 26 ml HNO ₃ 33 ml CH ₃ COOH	1500 Å/min
SIPOS	1 ml HF 6 ml H ₂ O 10 ml NH ₄ F (40%)	2000 Å/min for 20% O ₂ film
Al	1 ml HCl 2 ml H ₂ O	80°C, fine line, can be used with gallium arsenide
	4 ml H ₃ PO ₄ 1 ml HNO ₃ 4 ml CH ₃ COOH 1 ml H ₂ O	350 Å/min, fine line, will attack gallium arsenide
	16–19 ml H ₃ PO ₄ 1 ml HNO ₃ 0–4 ml H ₂ O	1500–2500 Å/min, will attack gallium arsenide
	0.1 M K ₂ Br ₄ O ₇ 0.51 M KOH 0.6 M K ₃ Fe(CN) ₆	1 μm/min, pH 13.6, no gas evolved during etching
Au	3 ml HCl 1 ml HNO ₃	Aqua regia, 25–50 μm/min
	4 g KI 1 g I ₂ 40 ml H ₂ O	0.5–1 μ m/min, can be used with resist
Ag	1 ml NH ₄ OH 1 ml H ₂ O ₂ 4 ml CH ₃ OH	3600 Å/min, can be used with resists, must be rinsed rapidly after etching

Material	Etchant	Remark
Cr	1 ml HCl 1 ml glycerine	800 Å/min, needs depassivation
	1 ml HCl 9 ml saturated CeSO ₄ solution	800 Å/min, needs depassivation
	1 ml, 1 g NaOH in 2 ml H ₂ O 3 ml, 1 g K ₃ Fe(CN) ₆ in 3 ml H ₂ O	250-1000 Å/min, no depassivation resist mask can be used
Мо	5 ml H ₃ PO ₄ 2 ml HNO ₃ 4 ml CH ₃ COOH 150 ml H ₂ O	0.5 μm/min, resist mask can be used
	5 ml H ₃ PO ₄ 3 ml HNO ₃ 2 ml H ₂ O	Polishing etch
	11 g K ₃ Fe(CN) ₆ 10 g KOH 150 ml H ₂ O	$1~\mu m/min$
W	34 g KH ₂ PO ₄ 13.4 g KOH 33 g K ₃ Fe(CN) ₆ H ₂ O to make 1 liter	1600 Å/min, high resolution, resist mask can be used
Pt	3 ml HCl 1 ml HNO ₃	Aqua regia, 20 μm/min, precede by a 30-s immersion in HF
	7 ml HCl 1 ml HNO ₃ 8 ml H ₂ O	400–500 Å/min, 85°
Pd	1 ml HCl 10 ml HNO ₃ 10 ml CH ₃ COOH	1000 Å/min
	4 g KI 1 g I ₂ 40 ml H ₂ O	1 μ m/min, opaque, must be rinsed before visual inspection

Reference:

- 1. Integrated circuit fabrication technology, David J. Elliott, McGRAW-HILL international editions, 1989.
- 2. VLSI Fabrication Principles-silicon and gallium arsenide, Sorab K. Ghandhi, second edition, John Wiley & Sons, Inc., 1994.