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Lecture 7-1 MOSIS/SCNA Design Example- 

Piezoresistive type Accelerometer I 

!! Schematic Figure: 

 

 

 

 

 

 

 

 

 

 

 

 

 

!!MEMS Accelerometer: 

1.! Consists a proof mass and a force detection system 
2.! Bulk micromachining to make proof mass ~mg 
3.! Detection methods: piezoresistive, capacitive, tunneling, 

acoustic wave, and optical methods.  
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!! Signal flow block diagram
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Dynamics 

The element for accelerometers and seismometers: 
 

 
 

The behavior of the instrument is described by the equation of 
motion: 
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For m (kg) is the mass of instrument, k (N/m) is the spring 
constant, b (N s/m) is the friction/damping coefficient, x is the 
displacement of the mass, X is the displacement of the object.  
Z=(X-x) is the mass relative-to-the-case motion. 
So we can rewrite Eqn. (1) as 
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(a)!If the displacement X is associated with a constant 

acceleration (like car accident, can be measured by an 
accelerometer) 

!"#$
"%# = '                  (7-1-3a) 

Then (7-1-2) becomes 
 

!"#(
"%# + *

"(
"% + +( = '           (7-1-4a) 

      If we now replace:  

   mkn /=ω =natural frequency of under-damped 
oscillation, rad/s 

   cbb /=ς = damping factor, dimensionless 

 nc mb ω2= =# +!=critical damping, kg/s     

(,-.!:0*1# − 3+! = 4) 
      

and solve the above equation by assuming a complex 
number: 

 
( = 67% 

       then 

7± = −9:; ± :; 9# − < 

 
  The solution to the differential equation is thus 

( % = =67>% + ?67@% + '
+              (7-1-5a) 

   
We can find out the system dynamic behavior: 
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(a)!over-damped system: *1# − 3+! > 4 or 9 > < 
(b)!critical-damped system: *1# − 3+! = 4 or 9 = < 
(c)!under-damped system: *1# − 3+! < 4 or 9 < < 

 

 
Time dependence of the system behavior on the value of the damping 
ratio ζ, for undamped (blue), under-damped (green), critically damped 
(red), and over-damped (cyan) cases, for zero-velocity initial condition. 

 
Steady state variation of amplitude with frequency and damping of a 
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driven simple harmonic oscillator 
 

( b) If the displacement X is a sinusoidal vibration with peak 
value X0 (like earthquake, detected by a seismometer): 

tXX ωsin0=                (7-1-3b) 
Then Eqn. (7-1-2) will be 
 

tmXkz
dt
dzb

dt
zdm ωω sin2

02

2

=++        (7-1-4b) 

 
The steady state solution: 

)sin(0 φω −= tzz                        (7-1-5b) 

where 

222

2
0

222

2
0

0

)2(])(1[

)(

)()(
nn

n

X

bmk

mXz

ω
ω

ς
ω
ω

ω
ω

ωω

ω

+−

=
+−

=    (7-1-6b) 

2
2

1

)(1

2
tan

n

n

mk
b

ω
ω
ω
ω

ς

ω
ω

φ
−

=
−

= −
                        (7-1-7b) 

 



NTHU� ESS5850                                                 Micro System Design 
F. G. Tseng                                                        Fall/2016, 7-1, p7 

Material Mechanics-Beam Theory 

 

 

 

 

 

 

 

 

 

The Moment-Curvature relation for a simple beam is 
 

EI
sM

s
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=
ρ                        (7-1-8) 

 
where M is the bending moment, s is the arc length along the 
beam, ρ is the radius of curvature, E is the Young’s modulus of 
the material, and I is the moment of inertia of the beam cross-
section.  EI is called the flexural stiffness of the beam.  Both E 
and I may be functions of the arc length, but are constants for an 
isotropic constant-cross-section beam.  For a rectangular cross 
section of height a and width b, the moment of inertia is  
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The curvature is  
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     (7-1-10) 

 
Combine Eqns. (7-1-8) and (7-1-10), we can have 
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Now consider a beam with one end clamped and the other under 
an applied force F and Torque M0 as in the figure.  If the beam 
is in equilibrium, then we must have torque balance at any point 
along its length, which implies that 

0)()( MxLFxM +−=                   (7-1-12) 

We then obtain 
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from Eqn. (1).  Integrating twice and applying the boundary 
conditions that y(0)=0 and y’(0)=0 gives 
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The angle of the beam is the first derivative of displacement with 
respect to position 
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So the deflection and orientation of the tip of the beam is 
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For the special case where end load is a pure force (no moment), 
the force/deflection relation is linear and can be written as F=kx.  
Where k is a function of the dimensions of the beam.  For a 
rectangular beam, I=a3b/12 
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!! Squeeze-film damping 

 

 

 
 
When the motion of a plate is perpendicular to another 

surfaces, and the separation between the plates is small compared 
to the width and length of the plates, there will be normal force on 
each plate due to squeeze-film damping.  By making a few 
simplifying assumptions, a closed form solution of the Navier-
Stoke equations for round plates of radius R is: 
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!!Maximum Strain 

For and isotropic beam of beam thickness a, given curvature ρ, 
the strain ε varies linearly through the thickness of the beam, 
with extreme on each surface, and zero strain in the center of the 
beam on the neutral axis.  From geometric arguments it can be 
shown that the magnitude of the surface strain is given by  
 

ρ
ε

2
a

=                         (7-1-20) 

 
 For a pure force applied to the end of the beam, the moment 
varies linearly as a function of arc length along the beam (Eqn. 7-
1-12), with a maximum moment at the base of the beam Mmax=FL 
which translates to maximum curvature of  
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so the maximum strain in the beam occurs at the base and has 
magnitude 
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